Telescope



Background

A telescope is a device used to form images of distant objects. The most familiar kind of telescope is an optical telescope, which uses a series of lenses or a curved mirror to focus visible light. An optical telescope which uses lenses is known as a refracting telescope or a refractor; one which uses a mirror is known as a reflecting telescope or a reflector. Besides optical telescopes, astronomers also use telescopes that focus radio waves, X-rays, and other forms of electromagnetic radiation. Telescopes vary in size and sophistication from homemade spyglasses built from cardboard tubes to arrays of house-sized radio telescopes stretching over many miles.

The earliest known telescope was a refractor built by the Dutch eyeglass maker Hans Lippershey in 1608 after he accidentally viewed objects through two different eyeglass lenses held a distance apart. He called his invention a kijker, "looker" in Dutch, and intended it for military use. In 1609, the Italian scientist Galileo Galilei built his own telescopes and was the first person to make astronomical observations using them. These early telescopes consisted of two glass lenses set within a hollow lead tube and were rather small; Galileo's largest instrument was about 47 inches (120 cm) long and 2 inches (5 cm) in diameter. Astronomers such as Johannes Kepler in Germany and Christian Huygens in Holland built larger, more powerful telescopes throughout the 1600s. Soon these telescopes got too large to be easily controlled by hand and required permanent mounts. Some were more than 197 feet (60 m) long.

The ability to construct enormous telescopes outpaced the ability of glassmakers to manufacture appropriate lenses for them. In particular, the problems caused by chromatic aberration (the tendency for a lens to focus each color of light at a different point, leading to a blurred image) became acute for very large telescopes. Scientists of the time knew of no way to avoid this problem with lenses, so they designed telescopes using curved mirrors instead.

In 1663, the Scottish mathematician James Gregory designed the first reflecting telescope. Alternate designs for reflectors were invented by the English scientist Isaac Newton in 1668 and the French scientist N. Cassegrain in 1672. All three designs are still in use today. In the 1600s, there was no good way to coat glass with a thin reflective film, as is done today to make mirrors, so these early reflectors used mirrors made out of polished metal. Newton used a mixture of copper, tin, and arsenic to produce a mirror which could only reflect 16% of the light it received; today's mirrors reflect nearly 100% of the light that hits them.

It had been known as early as 1730 that chromatic aberration could be minimized by replacing the main lens of the telescope with two properly shaped lenses made from two different kinds of glass, but it was not until the early 1800s that the science of glassmaking was advanced enough to make this technique practical. By the end of the 19th century, refracting telescopes with lenses up to a meter in diameter were constructed, and these are still the largest refracting telescopes in operation.

Reflectors once again dominated refractors in the 20th century, when techniques for constructing very large, very accurate mirrors were developed. The world's largest optical telescopes are all reflectors, with mirrors up to 19 feet (6 m) in diameter.

Raw Materials

A telescope consists of an optical system (the lenses and/or mirrors) and hardware components to hold the optical system in place and allow it to be maneuvered and focused. Lenses must be made from optical glass, a special kind of glass which is much purer and more uniform than ordinary glass. The most important raw material used to make optical glass is silicon dioxide, which must not contain more than one-tenth of one percent (0.1%) of impurities.

Optical glasses are generally divided into crown glasses and flint glasses. Crown glasses contain varying amounts of boron oxide, sodium oxide, potassium oxide, barium oxide, and zinc oxide. Flint glasses contain lead oxide. The antireflective coating on telescope lenses is usually composed of magnesium fluoride.

A telescope mirror can be made from glass that is somewhat less pure than that used to make a lens, since light does not pass through it. Often a strong, temperature-resistant glass such as Pyrex is used. Pyrex is a brand name for glass composed of silicon dioxide, boron oxide, and aluminum oxide. The reflective coating for telescope mirrors is usually made from aluminum, and the protective coating on top of the reflective coating is usually composed of silicon dioxide.

Hardware components that are directly involved with the optical system are usually manufactured from steel or steel and zinc alloys. Less critical parts can be made from light, inexpensive materials such as aluminum or acrylonitrile-butadiene-styrene plastic, commonly called ABS.

The Manufacturing
Process

Making the hardware components

Making optical glass

Making the lenses

The blanks are processed by the telescope manufacturer in three steps: cutting, grinding, and polishing. A mirror is formed in exactly the same way as a lens until the reflective coating is applied.

Applying coatings

Assembling and shipping the telescope

Quality Control

The most critical aspect of quality control for an optical telescope is the accuracy of the lenses and mirrors. During the cutting and grinding stages, the physical dimensions of the lens are measured very carefully. The thickness and the diameter of the lens are measured with a vernier caliper, an instrument which looks something like a monkey wrench. The outer, fixed jaw of the caliper is placed against one side of the lens and the inner, sliding jaw is gently moved until it meets the other side of the lens. In a classic vernier caliper, the dimensions of the lens are read very accurately using a scale which moves along with the inner jaw and which is compared with a stationary scale attached to the outer jaw. This type of caliper works much like a slide rule. There also exist electronic versions of this instrument, in which the measured dimension automatically appears on a digital display.

The curvature of a lens is measured with a spherometer, a device which resembles a pocket watch with three small pins protruding from its base. The outer two pins are fixed in place while the inner pin is free to move in and out. The spherometer is gently placed on the surface of the lens. Depending on the type of curve, the middle pin will either be higher than the other two pins or lower than the other two pins. The movement of the inner pin moves a needle on a calibrated dial on the face of the spherometer. This value is compared with the standard value that should be obtained for the desired curvature.

Tolerances vary with the type of lens being manufactured, but a typical acceptable variation might be plus or minus 0.0008 inches (20 micrometers). For a flat lens, generally one destined to become a flat mirror, the tolerance is much smaller, usually about plus or minus 0.00004 inches (1.0 micrometer).

During the polishing stage, these instruments are not accurate enough to ensure that the lens will work properly. Optical tests, which measure the way light is affected by the lens, must be used. One common test is known as an autocollimation test. The lens is placed in a dark room and is illuminated with a low intensity pinpoint light source. A diffraction grating (a surface containing thousands of microscopic parallel grooves per inch) is placed at the point where the lens should focus light. The grating causes an interference pattern of dark and light lines to form in front of and behind the focal point. The true focal point can thus be found precisely and compared with the theoretical focal point for the type of lens desired.

In order to test a flat lens, a lens that is known to be flat is placed face down on the lens that is to be tested, which rests on a piece of black felt. The microscopic gaps between the two lenses cause an interference pattern to appear when gentle pressure is applied. The light and dark lines are known as Newton's rings. If the lens being tested is flat, the lines should be straight and regular. If the lens is not flat, the lines will be curved.

The Future

The techniques used to produce excellent lenses and mirrors have been well under-stood for many years, and major innovations in this area are unlikely. One area of active research is in coating technology. New coating substances may be developed to provide better protection for mirrors and better prevention of loss of light through reflection for lenses.

A more dramatic area of progress is in the electronic accessories that accompany telescopes. Amateur astronomers will soon be able to obtain telescopes with built-in computer guidance systems that will enable them to automatically point the telescope at a selected celestial object and to track it night by night. They will also be able to attach video cameras to their telescopes and film such astronomical phenomena as lunar eclipses and the movements of planets and moons.

Where To Learn More

Books

Asimov, Isaac. Eyes on the Universe: A History of the Telescope. Houghton Mifflin, 1975.

Bell, Louis. The Telescope. Dover, 1981.

Manly, Peter L. Unusual Telescopes. Cambridge University Press, 1991.

Periodicals

Mullins, Mark. "A Truly Economical Telescope." Sky and Telescope, December 1993, pp. 91-92.

Nash, J. Madeleine. "Shoot for the Stars." Time, April 27, 1992, pp. 56-57.

Nelson, Ray. "Reinventing the Telescope." Popular Science, January 1995, pp. 57-59, 85.

Rose Secrest



Also read article about Telescope from Wikipedia

User Contributions:

Comment about this article, ask questions, or add new information about this topic:

CAPTCHA