Air Conditioner



Background

Residential and commercial space-cooling demands are increasing steadily throughout the world as what once was considered a luxury is now seemingly a necessity. Air-conditioning manufacturers have played a big part in making units more affordable by increasing their efficiency and improving components and technology. The competitiveness of the industry has increased with demand, and there are many companies providing air conditioning units and systems.

Air conditioning systems vary considerably in size and derive their energy from many different sources. Popularity of residential air conditioners has increased dramatically with the advent of central air, a strategy that utilizes the ducting in a home for both heating and cooling. Commercial air conditioners, almost mandatory in new construction, have changed a lot in the past few years as energy costs rise and power sources change and improve. The use of natural gas-powered industrial chillers has grown considerably, and they are used for commercial air conditioning in many applications.

Raw Materials

Air conditioners are made of different types of metal. Frequently, plastic and other nontraditional materials are used to reduce weight and cost. Copper or aluminum tubing, critical ingredients in many air conditioner components, provide superior thermal properties and a positive influence on system efficiency. Various components in an air conditioner will differ with the application, but usually they are comprised of stainless steel and other corrosion-resistant metals.

Self-contained units that house the refrigeration system will usually be encased in sheet metal that is protected from environmental conditions by a paint or powder coating.

The working fluid, the fluid that circulates through the air-conditioning system, is typically a liquid with strong thermodynamic characteristics like freon, hydrocarbons, ammonia, or water.

Design

All air conditioners have four basic components: a pump, an evaporator, a condenser, and an expansion valve. All have a working fluid and an opposing fluid medium as well.

Two air conditioners may look entirely dissimilar in both size, shape, and configuration, yet both function in basically the same way. This is due to the wide variety of applications and energy sources available. Most air conditioners derive their power from an electrically-driven motor and pump combination to circulate the refrigerant fluid. Some natural gas-driven chillers couple the pump with a gas engine in order to give off significantly more torque.

As the working fluid or refrigerant circulates through the air-conditioning system at high pressure via the pump, it will enter an evaporator where it changes into a gas state, taking heat from the opposing fluid medium and operating just like a heat exchanger. The working fluid then moves to the condenser, where it gives off heat to the atmosphere by condensing back into a liquid. After passing through an expansion valve, the working fluid returns to a low pressure

All air conditioners have four basic components: pump, evaporator, condenser, and expansion valve. Hot refrigerant vapor is pumped at high pressure through the condenser, where it gives off heat to the atmosphere by condensing into a liquid. The cooled refrigerant then passes through the expansion valve, which lowers the pressure of the liquid. The liquid refrigerant now enters the evaporator, where it will take heat from the room and change into a gaseous state. This part of the cycle releases cool air into the air-conditioned building. The hot refrigerant vapor is then ready to repeat the cycle.
All air conditioners have four basic components: pump, evaporator, condenser, and expansion valve. Hot refrigerant vapor is pumped at high pressure through the condenser, where it gives off heat to the atmosphere by condensing into a liquid. The cooled refrigerant then passes through the expansion valve, which lowers the pressure of the liquid. The liquid refrigerant now enters the evaporator, where it will take heat from the room and change into a gaseous state. This part of the cycle releases cool air into the air-conditioned building. The hot refrigerant vapor is then ready to repeat the cycle.
state. When the cooling medium (either a fluid or air) passes near the evaporator, heat is drawn to the evaporator. This process effectively cools the opposing medium, providing localized cooling where needed in the building. Early air conditioners used freon as the working fluid, but because of the hazardous effects freon has on the environment, it has been phased out. Recent designs have met strict challenges to improve the efficiency of a unit, while using an inferior substitute for freon.

The Manufacturing
Process

Creating encasement parts from galvanized sheet metal and structural steel

Punch pressing the sheet metal forms

Cleaning the parts

Powder coating

Bending the tubing for the condenser and evaporator

Joining the copper tubing with the aluminum plates

Installing the pump

Quality Control

Quality of the individual components is always checked at various stages of the manufacturing process. Outsourced parts must pass an incoming dimensional inspection from a quality assurance representative before being approved for use in the final product. Usually, each fabrication cell will have a quality control plan to verify dimensional integrity of each part. The unit will undergo a performance test when assembly is complete to assure the customer that each unit operates efficiently.

The Future

Air conditioner manufacturers face the challenge of improving efficiency and lowering costs. Because of the environmental concerns, working fluids now consist typically of ammonia or water. New research is under way to design new working fluids and better system components to keep up with rapidly expanding markets and applications. The competitiveness of the industry should remain strong, driving more innovations in manufacturing and design.

Where to Learn More

Other

"HVAC Online." 1997. http://www.hvaconline.com (July 9, 1997).

"Cold Point Manufacturing." 1997. http:/www.coldpoint.com/index3.htm (July 9, 1997).

Jason Rude



Also read article about Air Conditioner from Wikipedia

User Contributions:

1
Vs Vijayaraghavan
Report this comment as inappropriate
May 1, 2006 @ 5:05 am
Energy efficieny and Noise levels have become important parameters for ACs performance.
2
ARCHANA
Report this comment as inappropriate
Jun 25, 2008 @ 4:04 am
This is very helpful side through this side, we can get more and more information.We can learn lot of thing about airconditioner.
3
Report this comment as inappropriate
Aug 4, 2010 @ 11:11 am
I have always been interested in development of energy efficient air conditioning. Your site might be the one to follow. The cost of fossil fuel energy sources are soring in price and air conditioner to run on slow pumps,- alternate, cheaper energy sources or a combination of different energy sources might be considered.Also a challenge for the chemists would be to develop an alternative for 'freon'., OR is this all just a far fetched dream? Barney
4
test
Report this comment as inappropriate
Dec 11, 2013 @ 1:13 pm
I have always been interested in development of energy efficient air conditioning. Your site might be the one to follow. The cost of fossil fuel energy sources are soring in price and air conditioner to run on slow pumps,- alternate, cheaper energy sources or a combination of different energy sources might be considered.Also a challenge for the chemists would be to develop an alternative for 'freon'.,

Comment about this article, ask questions, or add new information about this topic:

CAPTCHA