Fountain Pen



Background

Humans have used various instruments to convey thoughts and feelings. Man's first writing instrument was his finger, using it to form symbols in the dirt. Later, pieces of metal or bone were used. Ancient Greeks used a stylus to mark on wax-coated writing tablets, while early Egyptians used hollow reeds as writing tools and papyrus as their writing surface.

During the Middle Ages, quill pens, made from bird feathers whose ends had been split and sharpened, became the writing tool of choice until the development of the steel dipping pen in the early 1800s. Steel pens, which used steel tips called nibs, did not require the frequent sharpening that quill pens did. However, they still needed to be dipped in an inkbottle because they did not contain their own ink.

Even as the steel pen was gaining in popularity, attempts to design a more practical writing instrument were being made. These efforts eventually resulted in one of the most popular writing tools still used, the fountain pen. Lewis Edson Waterman, a New York Insurance Agent, produced the first practical fountain pen in 1884. While both the quill and steel pens had to be dipped in ink, the fountain pen was the first to hold its own ink within a self-contained reservoir. Because of its practicality and durability, the fountain pen became the most popular writing instrument and remained so until the development of the ballpoint pen in 1938. The fountain pen remains popular for its elegance and prestige, both as a writing instrument and a valuable collector's item.

History

Attempts to develop a self-feeding pen that did not require sharpening were made as far back as the beginning of the tenth century. Numerous ideas were developed, but it was not until 1884 that success was finally achieved. Waterman's pen worked as flawlessly as a dipping pen but without the need for an external inkbottle. Waterman started producing these pens at a rate of 36 per week and selling them at his New York City cigar kiosk. However, the demand quickly soared, prompting Waterman to open a six-story production facility on Broadway, which he expanded even more in later years. The fountain pen dominated the writing instrument market for the next 60 years.

Capitalizing on Waterman's success, other companies joined the writing instrument manufacturing business. In 2001, the Writing Instrument Manufacturers Association, an organization comprised of companies that produce fountain pens and other writing tools, had approximately 25 members. The larger companies now use an automated process to produce fountain pens, while some smaller companies and individuals still produce them by hand, just as Waterman did back in 1884.

Although fountain pens are available in a variety of styles offering unique features, each is comprised of the same basic components: the nib, or point; the barrel, which holds the ink reservoir, and the cap, which fits over the nib of the pen to protect it from damage. Ink flows from the reservoir to the nib at a balanced rate of flow by means of a force called capillary attraction. This is the same force that causes a blotter to absorb ink or kerosene to flow up the wick of a flame.

The first nibs were made of gold alloys, often dipped in a hard metal called iridium for strength and resistance to corrosion. However, when gold alloy nibs became too expensive to mass-produce, steel was adopted as the material of choice. Solid gold, ranging from 18-22 karat, is still used for the nibs on some pens. Each nib has a slit at its tip that controls the flow of ink.

The first barrels were made of black hard rubber, chosen because it is ink-resistant and easily machinable. Postwar pens are more commonly made from durable plastic. However, barrels can be made from gold, silver, brass, wood, bone, or even crushed velvet.

The first fountain pens were filled with medicine droppers, which were later replaced with rubber sacs. First used in 1890, these sacs had a short life because the rubber material they were made from was not able to withstand the chemical action of the ink. Rubber compounds were later improved, and a long-lasting rubber sac was introduced in the late 1920s. This sac was later replaced by an even better semi-transparent, plasticized vinal resin sac containing no rubber. Various forms of sac depression mechanisms have been used throughout the years. The first sacless pen was introduced by the Parker Pen Company in 1932.

Raw Materials

Fountain pen barrels can be made from a wide variety of materials. Finer, more expensive pens are made from materials such as brass, silver, or gold. Modern pen manufacturers generally use less expensive materials for pen barrels, including: acrylic resin, also known as Lucite or Perspex, which is used for Parker 51 models; cellulose acetate; and various other injection-moldable polymers. Handmade pens can be created from wood or almost any other material that is solid, stable, and can be worked with standard woodworking tools. Examples include plywood, crushed velvet, bone, leather, and even antlers. Stainless steel is generally used to make the nibs, although gold or sterling silver may also be used. The clips and other fittings are usually made from a gold alloy that has been electroplated, or they may be gold or gold filled on finer pens.

Design

Fountain pens are available in a variety of designs and styles. Some are mass produced while others are custom-designed. With custom-designed pens, the creator must decide ahead of time what special features the pen will have and choose the appropriate tools and process to use based on those features. Some possible variations on design include laminating strips to produce intriguing patterns and color combinations, changing the style of the clip to give the pen a different look and feel, carving or burning a unique design into the surface of the pen, or inlaying gemstones or other materials into the pen surface. All of these design variations require some extra preparation and materials, but help make the pen unique, and sometimes, more valuable.

Refill mechanisms

A variety of mechanisms can be used to fill fountain pens. These include levers, buttons, pistons, and squeeze bulbs. Lever-fillers have a tiny lever built into the side of the pen. Lifting the lever causes the ink sac to compress. Then, after the nib is dipped in ink, closing the lever causes the sac to reinflate. Button-fillers have a button on the end of the pen. The button works similarly to the lever; pressing the button causes the sac to deflate, and releasing the button causes the sac to reinflate after the pen has been dipped in ink. Piston-fillers use a screw mechanism to move a piston inside the barrel, taking in and expelling ink, while squeeze bulb fillers are filled by repeatedly squeezing the bulb. Each one of these mechanisms are installed on the pen during final assembly.

The Manufacturing
Process

The larger pen manufacturers use automated processes to produce fountain pens. However, some smaller companies and individuals continue to create pens manually. The materials and processes used by different companies and individuals vary. Here is a common process used to create handmade pens from wood. This same process, or similar processes, can be used to create pens from other types of materials as well.

Manufacturing individual fountain pens from wood.
Manufacturing individual fountain pens from wood.

Preparing the blank

Inserting the brass tube

Mounting and turning the blank

Sanding and finishing

Preparing for assembly

Clips, fittings, and bands

Final assembly

Automated process

The process used to make fountain pens at larger companies is generally more automated. These companies use specially tooled machines to mold the pen barrels, usually from molten plastic. Machines also do the stamping and crimping of the metal parts, assemble the final product, and even take care of the polishing and cleaning.

Quality Control

Although there are no official guidelines governing the manufacture of fountain pens, most companies have a series of set inspections to ensure quality. They test for defects in the surface of the pen, the quality of the ink flow, the fit of the cap, and so on. Some pens even come with certifications to attest to the quality of the finished product. For example, the Parker 75, one of the Parker Pen Company's more famous models, undergoes 792 inspections and comes with a certificate of quality signed by the final inspector.

The Future

Although ballpoint pens have replaced the fountain pen as the universal writing tool, fountain pens continue to be popular with collectors as well as those who desire a more elegant and sophisticated writing tool. According to sources from Parker, the fastest growing markets for fountain pens in 2001 are in the Far and Middle East and in Europe.

One trend in the fountain pen market is the growing number of individuals who have begun manufacturing and selling pens on their own. This is made possible by the availability of pen kits containing all the materials and instructions needed, and by the popularity of the Internet as a means of selling handcrafted pens to a larger market.

Where to Learn More

Books

Christensen, Kip, and Rex Burningham. Turning Pens and Pencils. United Kingdom: Guild of Master Craftsman, 1999.

World Book Encyclopedia. Illinois: Field Enterprises Educational Corporation, 1963.

Other

Development of the Fountain Pen. 10 September 2001. < http://bamyard.syr.edu/~vefatica/fountain.txt

Nishimura, David. "Filling Instructions." Vintage Pens Web Page. 10 September. 2001. < http://www.vintagepens.com/fill.htm >.

"Parker Plant Tour. July/August 1998." Pen World International Magazine Web Page. 10 September 2001. < http://www.penworld.com/Issues98/julyaug98/parkemib.htm >.

WoodenPen.Com Web Page. 10 September 2001. < http:/lwww.woodenpen.com/how.htm >.

Writing Instrument Manufacturers Association Web Page. 10 September 2001. < http://www.wima.org >.

Kathy Saporito



User Contributions:

Comment about this article, ask questions, or add new information about this topic: