Topographic Map


A topographic map is a two-dimensional representation of a three-dimensional land surface. Topographic maps are differentiated from other maps in that they show both the horizontal and vertical positions of the terrain. Through a combination of contour lines, colors, symbols, labels, and other graphical representations, topographic maps portray the shapes and locations of mountains, forests, rivers, lakes, cities, roads, bridges, and many other natural and man-made features. They also contain valuable reference information for surveyors and map makers, including bench marks, base lines and meridians, and magnetic declinations. Topographic maps are used by civil engineers, environmental managers, and urban planners, as well as by outdoor enthusiasts, emergency services agencies, and historians.


Some of the earliest known maps were made in Mesopotamnia, in the area now known as Iraq, where a series of maps showing property boundaries were drawn in about 2400 B.C. for the purpose of land taxation. A Roman map dating from about 335-366 A.D. showed such topographical features as roads, cities, rivers, and mountains. The word topography is derived from the Greek words topos, meaning a place, and graphien, meaning to write. Thus, topography is the written, or drawn, description of a place.

Although the basics of land surveying were known as early as 1200 B.C. , and perhaps even earlier, the use of surveying techniques in preparing maps was limited to cities and other small-scale areas. Larger-scale maps were prepared from sketches or journals kept by explorers and sometimes reflected more imagination than observation. As a result, the exact positions of points on a map were often grossly in error.

In 1539, the Dutch mathematician and geographer Reiner Gemma Frisius described a method for surveying an area by dividing it into triangles. This concept of triangulation became one of the basic techniques of field surveying and is still used today. One of the first large-scale mapping projects using triangulation was started in the 1670s by Giovanni Domenico Cassini, who had been persuaded to make a detailed map of France. After Cassini's death, his children and grandchildren continued to labor on the project. The final result, called the Carte de Cassini, was published in 1793 and was the first accurate topographic map of an entire country. Its only shortcoming was the general lack of elevation measurements, other than a few spot elevations determined by measuring the variation in air pressure with altitude using a barometer. The concept of contour lines to show different elevations on a map was developed by the French engineer J.L. Dupain-Triel in 1791. Although this method allowed the accurate depiction of land contours and elevations on a flat, two-dimensional map, it was not widely used until the mid-1800s.

In the United States, the federal government recognized the importance of accurate topographic maps in a rapidly growing country. In 1807, President Thomas Jefferson established the Survey of the Coast to map the Atlantic coastline as an aid to travel and commerce. In 1836, this organization was renamed the U.S. Coast Survey, and in 1878 the name changed to the U.S. Coast and Geodetic Survey. In the meantime, mapping of the interior of the country fell to a variety of individuals and organizations, including the Lewis and Clark expedition in 1804-1806, who mapped their route from St. Louis, Missouri, to the Pacific Northwest. During the period from 1838 until the outbreak of the Civil War in 1861, the Army's Corps of Topographical Engineers made major contributions in mapping the western United States, including a detailed map published in 1848 based on John Fremont's explorations. By the 1870s, so many different groups were conducting surveys that their work began to overlap. To consolidate this effort, the U.S. Geological Survey (USGS) was established in 1879.

Most of the early map making was done by laborious field surveys. Starting in the 1930s, the USGS began using aerial photography techniques to produce and update maps. In the 1980s the use of computers to scan and redraw existing maps significantly reduced the time required to update maps in areas of rapid growth.

Today, the USGS has more than 56,000 topographic maps of the United States in various scales, plus maps of the moon and planets. They also publish specialty maps including geologic, hydrologic, and photoimage maps for a variety of uses.

Map Scales, Symbols,
and Colors

In order to be useful, topographic maps must show sufficient information on a map size that is convenient to use. This is accomplished by selecting a map scale that is neither too large nor too small and by enhancing the map details through the use of symbols and colors.

The most common USGS topographic map scale is 1:24,000. In this scale 1 inch on the map represents 24,000 in, or 2,000 ft. (1 cm represents 240 m) on the ground. These maps are called 7.5 minute quadrangle maps because each map covers a four-sided area on the surface of Earth that is 7.5 minutes of longitude wide and 7.5 minutes of latitude high, where 60 minutes equals one degree of angle. Because the distance between longitude lines gets narrower as you move from the equator towards the poles, the widths of the maps also vary. For maps of the United States, the maps measure about 23 in (58.4 cm) wide by 27 in (68.6 cm) high for locations below a latitude of 31 degrees and about 22 in (55.9 cm) wide by 27 in (68.6 cm high) for locations above that latitude. Other common USGS map scales are 1:63,360, 1:100,000, and 1:250,000. These scales cover larger areas than the 1:24,000 maps, but with less detail.

In order to make the topographic maps easier to interpret, symbols and colors are used to represent various natural and man-made features. Some symbols are designed to look like the feature when viewed from overhead. For example, buildings are shown as solid objects in the shape of the building outline. Other symbols are universally recognized representations such as a long line with small cross marks to represent a railroad. Colors play an even more important role. Rivers, lakes, and other bodies of water are shown in blue. Forests and heavily vegetated areas are shown in green. Minor roads and highways are shown in black, while major highways are shown in red. Contour lines, which represent the shape of the ground itself, are shown in brown. Recent revisions to the map are shown in purple.

The Manufacturing

The production of an accurate topographic map is a long and complex process that may take as much as five years from start to finish. It takes a skilled team of surveyors, engravers, fact checkers, printers, and others to produce a good map. Here is a typical sequence of operations used by the U.S. Geological Survey to produce a 7.5 minute quadrangle topographic map.

Photographing the area

Surveying the control points

Verifying the map features

Compiling the map manuscript

Scribing and editing the map

Printing the map

Quality Control

The USGS uses the National Map Accuracy Standards set up in 1947. Starting in 1958, the USGS began testing the accuracy of their maps by field checking 20 or more well defined points on about 10% of the maps being produced each year.

For a 7.5 minute map at 1:24,000 scale, the horizontal accuracy standard requires that the locations shown on the map for at least 90% of the points checked must be accurate to within 40 ft (12.2 m) of the actual locations on the ground. The vertical accuracy standard requires that the elevations shown on the map for at least 90% of the points checked must be accurate to within one half of the contour interval on the ground. For a map with 10 ft (3 m) contour intervals, this means the elevations shown on the map must be accurate to within 5 ft (1.5 m) of the actual elevations on the ground. To give you an idea of what these standards mean to map makers, the horizontal accuracy standard requires that the location of at least 90% of the check points on the map must be drawn to within 0.02 in (0.05 cm) of the correct position.

The Future

Most of the topographic maps currently in use were produced manually. For mapmakers, however, the future is here today. A well-established network of navigational satellites form the basis of the Global Positioning System (GPS). This system allows field surveyors to accurately determine horizontal positions within a few feet, even in the most remote terrain where conventional surveying techniques are impossible.

Other satellites carrying a variety of sensors may soon replace the aerial photography method of making maps. The first of a series of Landsat satellites was launched in 1972, and by 1984 they could detect objects on the surface of Earth about 100 ft (30 m) in size. In 1998, an American company was preparing to launch a satellite that could detect objects as small as 3 ft (1 m), which would produce images with as much detail as current USGS 7.5 minute maps. More importantly, these images would be captured and transmitted as digital data, which could then be processed and printed by computers. This would significantly reduce the time required to produce or update maps and would improve the overall accuracy as well.

Where to Learn More


Thompson, Morris M. Maps for America, 3rd edition. U.S. Department of the Interior, Geological Survey National Center, 1987.


Pike, Richard J. and Gail P. Thelin. "Building a Better Map." Earth (January 1992): 44-51.

Wilford, John Noble. "Revolutions in Mapping." National Geographic (February 1998): 6-39.


"Map Accuracy Standards." U.S. Department of the Interior, U.S. Geological Survey, July 1996.

"Map Scales." U.S. Department of the Interior, U.S. Geological Survey, October 1993.

"Topographic Mapping." U.S. Department of the Interior, U.S. Geological Survey.

"Topographic Map Symbols." U.S. Department of the Interior, U.S. Geological Survey.

U.S. Geological Survey. .

—Chris Cavette

Also read article about Topographic Map from Wikipedia

User Contributions:

Al Mosher
Puzzled by the paragraph on Quality Control, seems inconsistent. It talks of horizontal accuracy to 40 feet but the end they say 2/100ths of an INCH.??!?

"To give you an idea of what these standards mean to map makers, the horizontal accuracy standard requires that the location of at least 90% of the check points on the map must be drawn to within 0.02 in (0.05 cm) of the correct position."

Comment about this article, ask questions, or add new information about this topic: